Abstract
Let G be a group and M a G-module; then d(G) denotes the minimal number of generators of G and dG(M) the minimal number of generators over ZG of M. For G a finite nilpotent group let G = F/R, F free, be a presentation for G; then it is shown that d(R/[F, R]) = dG(R/[R, R]), that is d(G) + d(M(G)) = dG(R/R′), where M(G) denotes the Schur multiplicator of G.

This publication has 3 references indexed in Scilit: