1,25-Dihydroxyvitamin D3 Induces Responsiveness to the Chemotactic Peptide f-Met-Leu-Phe in the Human Monocytic Line U937: Dissociation Between Calcium and Oxidative Metabolic Responses

Abstract
In the human premonocytic line U937, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) induces a functional NADPH oxidase, that is responsive to both phorbol esters and opsonized zymosan. The chemotactic peptide f-Met-Leu-Phe (fMLP) did not. however, induce superoxide generation by these cells. This was not due to the absence of receptors for fMLP. Although there was no significant binding of [3H]-fMLP to undifferentiated U937 cells, preincubation with 1,25-(OH)2D3 induced expression of specific and saturable binding sites. Moreover, fMLP induced a rapid and reversible rise in cytosolic free Ca1+ concentration ([Ca2+]i) in 1,25-(OH)2D3-treated U937 cells, but not in control or 24,25-dihydroxyvitamin D3 (24,25-(OH)sD3)-treated cells. This [Ca2+]i response was dependent on concentrations of both fMLP and 1,25-(OH)2D3 and was observed at physiologic concentrations of the hormone (25 pM). The rise in [Ca2+]i induced by fMLP in 1,25-(OH)2D3-treated U937 cells was blocked by pertussis toxin and presumably mediated by inositol (1,4.5)-trisphosphate generation. These results indicate that in U937 cells differentiated with 1,25-(OH)2D3, inositol phosphate-mediated [Ca2+]i responses to fMLP are uncoupled from NADPH oxidase activation.

This publication has 22 references indexed in Scilit: