Partial CD4 Depletion Reduces Regulatory T Cells Induced by Multiple Vaccinations and Restores Therapeutic Efficacy
Open Access
- 11 November 2009
- journal article
- Published by American Association for Cancer Research (AACR) in Clinical Cancer Research
- Vol. 15 (22) , 6881-6890
- https://doi.org/10.1158/1078-0432.ccr-09-1113
Abstract
Purpose: A single vaccination of intact or reconstituted-lymphopenic mice (RLM) with a granulocyte macrophage colony-stimulating factor–secreting B16BL6-D5 melanoma cell line induces protective antitumor immunity and T cells that mediate the regression of established melanoma in adoptive immunotherapy studies. We wanted to study if multiple vaccinations during immune reconstitution of the lymphopenic host would maintain a potent antitumor immune response. Experimental Design: RLM were vaccinated multiple times over a 40-day period. Spleens were isolated from these mice, activated in vitro, and adoptively transferred into mice bearing 3-day experimental pulmonary metastases. Results: Multiple vaccinations, rather than boosting the immune response, significantly reduced therapeutic efficacy of adoptive immunotherapy and were associated with an increased frequency and absolute number of CD3+CD4+Foxp3+ T regulatory (Treg) cells. Anti-CD4 administration reduced the absolute number of Treg cells 9-fold. Effector T-cells generated from anti-CD4–treated mice were significantly (P < 0.0001) more therapeutic in adoptive transfer studies than T cells from multiply vaccinated animals with a full complement of CD4+ cells. Conclusion: These results suggest that CD4+ Treg cells limit the efficacy of multiple vaccinations and that timed partial depletion of CD4+ T cells may reduce suppression and “tip-the-balance” in favor of therapeutic antitumor immunity. The recent failure of large phase III cancer vaccine clinical trials, wherein patients received multiple vaccines, underscores the potential clinical relevance of these findings. (Clin Cancer Res 2009;15(22):6881–90)Keywords
All Related Versions
This publication has 48 references indexed in Scilit:
- Disruption of TGF-β Signaling Prevents the Generation of Tumor-Sensitized Regulatory T Cells and Facilitates Therapeutic Antitumor ImmunityThe Journal of Immunology, 2009
- Therapeutic vaccines in solid tumours: Can they be harmful?European Journal Of Cancer, 2009
- Treg Depletion Inhibits Efficacy of Cancer Immunotherapy: Implications for Clinical TrialsPLOS ONE, 2008
- A Human CD4 Monoclonal Antibody for the Treatment of T-Cell Lymphoma Combines Inhibition of T-Cell Signaling by a Dual Mechanism with Potent Fc-Dependent Effector ActivityCancer Research, 2007
- Inability to Mediate Prolonged Reduction of Regulatory T Cells After Transfer of Autologous CD25-depleted PBMC and Interleukin-2 After Lymphodepleting ChemotherapyJournal of Immunotherapy, 2007
- Regulatory T cells, tumour immunity and immunotherapyNature Reviews Immunology, 2006
- CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curativeEuropean Journal of Immunology, 2004
- Natural versus adaptive regulatory T cellsNature Reviews Immunology, 2003
- Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells.The Journal of Experimental Medicine, 1984
- Augmentation of specific immune response against a syngeneic SV40-induced sarcoma in mice by depletion of suppressor T cells with cyclophosphamideCellular Immunology, 1979