Abstract
The high-frequency vortex dynamics of high-temperature superconductors near the flux-line depinning threshold is investigated based on a thermally activated flux-flow (TAFF) model. Dissipation due to vortex motion driven by a microwave electromagnetic field is studied as a function of the frequency, temperature, dc magnetic field, and microwave power. The generalized TAFF model is also compared to the conventional flux-creep theory and is found qualitatively consistent.