Hydrogen Halide-Catalyzed Thermal Decomposition of Poly(vinyl Chloride)

Abstract
The thermal decomposition of solid PVC was studied in the presence of added hydrogen chloride and hydrogen bromide over the temperature range 170–210°C. Under certain conditions the decomposition was shown to be dependent in a first-order manner on the hydrogen halide pressure. These gases acted as catalysts, increasing the rate of HCl evolution and the degree of discoloration but not producing longer polyene sequences. Activation energy for the HCl-catalyzed process was found to be similar to that of the uncatalyzed decomposition of PVC. A unified mechanism is presented for an overall process consisting of three steps: random generation of a single carbon-carbon double bond in the cis configuration; 1,4-elimination of HCl via a six-centered transition state yielding a polyene; HCl- or HBr-catalyzed isomerization of the polyene formed by HC1 elimination to regenerate the initial structure. Hydrogen chloride catalysis is seen as an integral part of the overall process.

This publication has 37 references indexed in Scilit: