Genetic algorithms in engineering electromagnetics

Abstract
This paper presents a tutorial and overview of genetic algorithms for electromagnetic optimization. Genetic-algorithm (GA) optimizers are robust, stochastic search methods modelled on the concepts of natural selection and evolution. The relationship between traditional optimization techniques and the GA is discussed. Step-by-step implementation aspects of the GA are detailed, through an example with the objective of providing useful guidelines for the potential user. Extensive use is made of sidebars and graphical presentation to facilitate understanding. The tutorial is followed by a discussion of several electromagnetic applications in which the GA has proven useful. The applications discussed include the design of lightweight, broadband microwave absorbers, the reduction of array sidelobes in thinned arrays, the design of shaped-beam antenna arrays, the extraction of natural resonance modes of radar targets from backscattered response data, and the design of broadband patch antennas. Genetic-algorithm optimization is shown to be suitable for optimizing a broad class of problems of interest to the electromagnetic community. A comprehensive list of key references, organized by application category, is also provided.

This publication has 14 references indexed in Scilit: