DNA fingerprinting to study spatial and temporal distributions of an aphid,Schizaphis graminum(Homoptera: Aphididae)

Abstract
The length of the intergenic spacer in the rRNA cistron varied within and among individuals ofSchizaphis graminum(Rondani). Spacer lengths did not vary among offspring of a single maternal lineage (clone). The intergenic spacer was used as a molecular fingerprinting probe on individual aphids and to study spatial and temporal distributions of clones. A spatially nested sampling design was used in wheat and sorghum to estimate numbers of clones among aphids on leaves, among leaves on plants, among plants in fields, among fields in counties, among counties, and among dates. Each level of nesting added a level of clonal diversity to the entire population. 82.3% of the total population diversity was found among aphids on one sorghum leaf. Sampling additional leaves increased diversity slightly (5.4%), whereas plants (0.9%), fields (0.6% to 3.6%), and counties (1.2%) added very little. Sample dates contributed the highest increase in diversity (11%). Diversity rose and fell in wheat along with aphid numbers but remained constant in sorghum. Little variation in Mahalanobis distances could be explained by geographic distances. No genotypes were unique to any field, county, crop, or year. Kansas populations are made up of a large mixture of genetically diverse clones that recolonize wheat and sorghum each year. Sampling many plants, fields, or counties is an ineffective way to increase clonal diversity. Plant breeders developing crop resistance toS. graminumcan expect plant entries to be exposed to most of the genetic diversity present in Kansas populations regardless of location.