Spatial gradients of intracellular calcium in skeletal muscle during fatigue
- 1 March 1990
- journal article
- research article
- Published by Springer Nature in Pflügers Archiv - European Journal of Physiology
- Vol. 415 (6) , 734-740
- https://doi.org/10.1007/bf02584013
Abstract
We have measured the distribution of intracellular calcium concentration in isolated single muscle fibres fromXenopus laevis using the fluorescent calcium indicator fura-2 with digital imaging fluorescence microscopy. Under control conditions, resting and tetanic calcium were uniform throughout a fibre. When fatigue was produced using a prolonged, high-frequency tetanus, the distribution of calcium within muscle fibres became non-uniform, with greater levels near the outer parts of a fibre than near the centre. This non-uniform distribution of calcium was rapidly abolished by lowering the stimulation frequency. When fatigue was produced using a series of repeated intermittent tetani, tetanic calcium showed an initial small increase, followed by a decrease as stimulation was continued. The distribution of calcium remained uniform under these conditions. Calcium distribution was also uniform during recovery from intermittent tetanic stimulation. Although fibres varied considerably in their fatigue resistance, the time for tension to fall to 50% was correlated with the reduction in tetanic calcium seen at this time. These results indicate that there are at least two patterns of reduced calcium release that can contribute to the development of fatigue. The appearance of a calcium gradient is consistent with impaired t-tubular conduction, while a uniform reduction of calcium is likely to be due to the action of metabolic factors on systems controlling calcium homeostasis within the cell.Keywords
This publication has 26 references indexed in Scilit:
- Excitation frequency and muscle fatigue: Mechanical responses during voluntary and stimulated contractionsPublished by Elsevier ,2004
- Myoplasmic binding of fura-2 investigated by steady-state fluorescence and absorbance measurementsBiophysical Journal, 1988
- Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compoundsArchives of Biochemistry and Biophysics, 1988
- Ryanodine Receptor of Skeletal Muscle Is a Gap Junction-Type ChannelScience, 1988
- Force and membrane potential during and after fatiguing, intermittent tetanic stimulation of single Xenopus muscle fibresActa Physiologica Scandinavica, 1986
- Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2Nature, 1985
- The effects of ADP and phosphate on the contraction of muscle fibersBiophysical Journal, 1985
- Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channelsNature, 1985
- Changes in muscle contractile properties and neural control during human muscular fatigueMuscle & Nerve, 1984
- Types of Muscle Fibres in Toad Skeletal MuscleActa Physiologica Scandinavica, 1966