Abstract
A three-dimensional second-order closure meteorological and pollutant dispersion model is developed, and the computed results are evaluated. A finite-element method is used to solve the governing equations because of its versatility in handling variable-resolution meshes and complex geometries. The one-dimensional version of this model is used to simulate a 24-h diurnal cycle for a horizontally homogeneous atmospheric boundary layer in neutral, stable, and unstable stratifications. The simulated turbulence fields under a convective boundary layer act as the background turbulence for simulating cases of three-dimensional pollutant dispersion from elevated point sources. The simulated turbulence and pollutant distribution compared well with experimental observations and with other numerical models, ensuring the validity of the adopted mathematical formulation as well as the developed model. The computed results provide an overview of turbulence structures in different atmospheric stabilities and ar... Abstract A three-dimensional second-order closure meteorological and pollutant dispersion model is developed, and the computed results are evaluated. A finite-element method is used to solve the governing equations because of its versatility in handling variable-resolution meshes and complex geometries. The one-dimensional version of this model is used to simulate a 24-h diurnal cycle for a horizontally homogeneous atmospheric boundary layer in neutral, stable, and unstable stratifications. The simulated turbulence fields under a convective boundary layer act as the background turbulence for simulating cases of three-dimensional pollutant dispersion from elevated point sources. The simulated turbulence and pollutant distribution compared well with experimental observations and with other numerical models, ensuring the validity of the adopted mathematical formulation as well as the developed model. The computed results provide an overview of turbulence structures in different atmospheric stabilities and ar...

This publication has 0 references indexed in Scilit: