Function Learning from Interpolation

Abstract
In this paper, we study a statistical property of classes of real-valued functions that we call approximation from interpolated examples. We derive a characterization of function classes that have this property, in terms of their ‘fat-shattering function’, a notion that has proved useful in computational learning theory. The property is central to a problem of learning real-valued functions from random examples in which we require satisfactory performance from every algorithm that returns a function which approximately interpolates the training examples.

This publication has 0 references indexed in Scilit: