An Experimental Investigation of the Spray Issued from a pMDI Using Laser Diagnostic Techniques

Abstract
This research was concerned with the experimental investigation of the spray issued from a pressurised metered-dose inhaler (pMDI) using laser diagnostic techniques and has been motivated by the urgent need to find suitable replacements to the environmentally destructive CFC propellants currently used in the device. The experimental work was conducted using phase-Doppler particle analysis (PDPA), a single particle light scattering technique that provides the simultaneous measurement of drop size, velocity, and concentration, yielding the most detailed temporal and spatial analysis of the pMDI spray to date. Three formulations were studied to compare the performance of an "ozone-friendly" hydrofluoroalkane propellant against that of a traditional CFC propellant mixture and a commercially available CFC formulation containing drug and surfactant. The PDPA analysis was complemented by a visual investigation of the near-orifice flow field using copper laserstrobe microcinematography to obtain information on the primary atomization process of the pMDI. This work was conducted in parallel with the theoretical investigation of the spray issued from a pMDI.