Ethanolamine Kinase Activity in Purified Myelin of Rat Brain

Abstract
Highly purified rat brain myelin showed a significant level of ethanolamine kinase, amounting to 17% of the specific activity of whole brain homogenate. This kinase level in myelin was an order of magnitude higher than that of lactate dehydrogenase, a marker for cytosol. Subcellular distribution studies revealed that in addition to myelin, this kinase was present in the P1, P2, P3, and cytosolic fractions with highest relative specific activity in the latter. The possibility that myelin activity resulted from adsorption of the soluble enzyme was unlikely since activity was retained in myelin that had been washed with buffered sodium chloride or taurocholate. Mixing experiments and repeated purification further indicated that the enzyme is intrinsic to myelin. Kinetic studies indicated similar Km values for ethanolamine in the microsomal, cytosolic, and myelin fractions but a significantly lower apparent Km for ATP in myelin. This and other differences suggested the possible existence of isozymes. Establishment of the presence of this kinase completes the list of phospholipid synthesizing enzymes needed to synthesize phosphatidylethanolamine from diacylglycerol within the myelin membrane.