Abstract
La recherche de la structure des espaces homogènes kählériens d’un groupe de Lie semi-simple fait l’objet de plusieurs travaux récents. L’étude détaillée a été faite au cas compact. Il a été montré en particulier que ces espaces homogènes compacts sont des variétés algébriques (même rationnelles) et simplement connexes. Le but essentiel de ce travail est de montrer que tout espace homogène kählérien compact est produit direct d’un tore complexe et d’un espace homogène kählérien d’un groupe de Lie compact semi-simple (Théorème 3). Pour ce but nous étudierons au paragraphe 1 la structure des espaces homogènes symplectiques d’un groupe de Lie réductif. La structure et la situation du groupe d’isotropie seront clarifiées dans le théorème 1. Au paragraphe 2 on en déduit un théorème sur la structure des espaces homogènes kählériens d’un groupe de Lie réductif (Théorème 2). Le théorème 3 est une conséquence immédiate du théorème 2.

This publication has 4 references indexed in Scilit: