Abstract
The role of Ia in T cell activation was investigated by incorporating affinity-purified I-Ad molecules into synthetic liposomal membranes and by using these as antigen-presenting units. IL 2 production by I-Ad-restricted, chicken ovalbumin-specific T cell hybridomas was measured in a system in which antigen processing by the presenter was not required. I-Ad-bearing liposomes were found to have no antigen-presenting capacity. It was shown, however, that antigen-presenting capacity could be conferred on Ia-negative cells by fusion of these cells with liposomes bearing I-Ad molecules, together with Sendai virus envelope glycoproteins, as fusogenic agents. Both Ia-negative B lymphoma cells and mouse L cells were capable of antigen presentation of predigested ovalbumin after fusion with vesicles formed from phosphatidylserine and phosphatidylethanolamine in a 1:1 w:w ratio. The cell surface expression of the transferred Ia remained stable for at least 7 hr. These results indicate that Ia is the only additional cell surface molecule required, at least by Ia-negative B cell lymphomas and L cells, to convert them into effective antigen-presenting cells. This system should be useful in future studies of the cellular requirements for antigen processing and presentation.