Synchronized GABAergic IPSPs recorded in the neocortex after blockade of synaptic transmission mediated by excitatory amino acids

Abstract
1. Intracellular and extracellular recordings were carried out in guinea pig neocortical slices to examine the effects of blockade of excitatory amino acid (EAA) synaptic transmission on population discharges elicited by 4-aminopyridine (4-AP; 50-100 microM). 2. After the introduction of 4-AP, two distinct types of rhythmic spontaneous field potentials were recorded in neocortical slices. Type I consisted of multiple spike discharges lasting 20-90 s. These events occurred at a frequency of 0.4-0.2/min. Type II were single field potential spikes (3-6 s in duration) occurring at a higher frequency (2-4/min). 3. Blockade of amino acid-mediated excitatory synaptic transmission with D-2-amino-5-phosphonovaleric acid (D-AP5; 10-30 microM) or 3-(2-carboxypiperazin-4-yl)propyl-l-phosphonic acid (CPP, 10 microM) and 6-cyano-7nitroquinoxaline-2,3-dione (CNQX; 10 microM) abolished the first type of 4-AP-induced field potential, whereas type II events persisted. 4. Type II field events, occurring in the presence of EAA blockers, were further characterized by paired recordings. Events recorded along an axis orthogonal to the pia surface occurred simultaneously without measurable delay. Recordings made along a plane parallel to the pia surface showed that type II discharges propagated over distances of greater than or equal to 3 mm at an estimated velocity of 7.5 mm/s. 5. Intracellular recordings show that during type II field discharges all cells exhibited phasic depolarizations or hyperpolarizations, depending on the resting membrane potential. When resting potentials were more depolarized than -68 mV, events became mostly hyperpolarizing.(ABSTRACT TRUNCATED AT 250 WORDS)

This publication has 0 references indexed in Scilit: