The Ordering of Spec R

Abstract
Let Specie denote the set of prime ideals of a commutative ring with identity R, ordered by inclusion; and call a partially ordered set spectral if it is order isomorphic to Spec R for some R. What are some conditions, necessary or sufficient, for a partially ordered set X to be spectral? The most desirable answer would be the type of result that would allow one to stare at the diagram of a given X and then be able to say whether or not X is spectral. For example, it is known that finite partially ordered sets are spectral (see [2] or [5]).

This publication has 0 references indexed in Scilit: