Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants

Abstract
The SXT element (SXT) is becoming an increasingly prevalent vector for the dissemination of antibiotic resistances in Vibrio cholerae. SXT is a member of a larger family of elements, formerly defined as IncJ plasmids, that are self-transmissible by conjugation and integrate site-specifically into the host chromosome. Comparison of the DNA sequences of SXT and R391, an IncJ element from Providencia rettgeri, indicate that these elements consist of a conserved backbone that mediates the regulation, excision/integration and conjugative transfer of the elements. Both elements have insertions into this backbone that either confer the element-specific properties or are of unknown function. Interestingly, the conserved SXT and R391 backbone apparently contains hotspots for insertion of additional DNA sequences. This backbone represents a scaffold for the mobilization of genetic material between a wide range of Gram-negative bacteria, allowing for rapid adaptation to changing envi ronments.

This publication has 0 references indexed in Scilit: