Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor
Open Access
- 29 January 2000
- journal article
- Published by The Royal Society in Philosophical Transactions Of The Royal Society B-Biological Sciences
- Vol. 355 (1393) , 71-89
- https://doi.org/10.1098/rstb.2000.0550
Abstract
Neuroanatomists have described a large number of connections between the various structures of monkey and cat cortical sensory systems. Because of the complexity of the connection data, analysis is required to unravel what principles of organization they imply. To date, analysis of laminar origin and termination connection data to reveal hierarchical relationships between the cortical areas has been the most widely acknowledged approach. We programmed a network processor that searches for optimal hierarchical orderings of cortical areas given known hierarchical constraints and rules for their interpretation. For all cortical systems and all cost functions, the processor found a multitude of equally low–cost hierarchies. Laminar hierarchical constraints that are presently available in the anatomical literature were therefore insufficient to constrain a unique ordering for any of the sensory systems we analysed. Hierarchical orderings of the monkey visual system that have been widely reported, but which were derived by hand, were not among the optimal orderings. All the cortical systems we studied displayed a significant degree of hierarchical organization, and the anatomical constraints from the monkey visual and somatomotor systems were satisfied with very few constraint violations in the optimal hierarchies. The visual and somato–motor systems in that animal were therefore surprisingly strictly hierarchical. Most inconsistencies between the constraints and the hierarchical relationships in the optimal structures for the visual system were related to connections of area FST (fundus of superior temporal sulcus). W e found that the hierarchical solutions could be further improved by assuming that FSTconsists of two areas, which differ in the nature of their projections. Indeed, we found that perfect hierarchical arrangements of the primate visual system, without any violation of anatomical constraints, could be obtained under two reasonable conditions, namely the subdivision of FST into two distinct areas, whose connectivity we predict, and the abolition of at least one of the less reliable rule constraints. Our analyses showed that the future collection of the same type of laminar constraints, or the inclusion of new hierarchical constraints from thalamocortical connections, will not resolve the problem of multiple optimal hierarchical representations for the primate visual system. Further data, however, may help to specify the relative ordering of some more areas. This indeterminacy of the visual hierarchy is in part due to the reported absence of some connections between cortical areas. These absences are consistent with limited cross–talk between differentiated processing streams in the system. Hence, hierarchical representation of the visual system is affected by, and must take into account, other organizational features, such as processing streams.Keywords
This publication has 34 references indexed in Scilit:
- The Distribution of Callosal Connections Correlates with the Pattern of Cytochrome Oxidase Stripes in Visual Area V2 of Macaque MonkeysCerebral Cortex, 1996
- Indeterminate Organization of the Visual SystemScience, 1996
- On Hierarchies:: Response to Hilgetag et al.Science, 1996
- Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: Evidence for subdivisions of superior temporal polysensory cortexJournal of Comparative Neurology, 1995
- Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual systemPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1995
- Modular Organization of Human Extrastriate Visual Cortex: Evidence from Cytochrome Oxidase Pattern in Normal and Macular Degeneration CasesEuropean Journal of Neuroscience, 1994
- The timing of processing along the visual pathway in the catNeuroReport, 1994
- Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortexJournal of Comparative Neurology, 1993
- Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaqueJournal of Comparative Neurology, 1990
- Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkeyBrain Research, 1979