Molecular Dynamics Studies on Peroxidases: A Structural Model for Horse Radish Peroxidase and a Substrate Adduct

Abstract
Molecular dynamics (MD) calculations are performed on cytochrome c peroxidase (CcP) and on horseradish peroxidase, isoenzyme C (HRP), and its substrate adduct with p-cresol. For CcP, a refinement in solution of the X-ray structure is obtained which indicates that in solution the protein structure is very similar to that in the crystal. For HRP, the X-ray structure is not available. We have generated a model of this protein based on the recently reported structure of the similar lignin peroxidase (LiP) protein. This model involves the entire system as all the amino acid residues match the sequence. This HRP model was refined through energy minimization and MD calculations. A refined structural model for HRP, for the first time involving the entire protein, is therefore now available. The tertiary structure of HRP is close to that of LiP, and also the active site in the two proteins has significantly similar structures. The well-ordered water molecules and the extensive H-bond network present in the X-ray structure of CcP is maintained in the dynamics without any constraints, indicating that the active site residues produce a field strong enough to make all these interactions quite stable. Interestingly, also in HRP a network of ordered water molecules and H-bonds is present, again without constraints. This is consistent with the similarities of the active sites in the two proteins. Finally, we have calculated the MD structure of the adduct of HRP and a substrate molecule, p-cresol. This structural model is compared with the NMR data, which are in fairly good agreement. The binding site and the protein-substrate interactions are discussed.

This publication has 0 references indexed in Scilit: