Free Fatty Acid Content and Release Kinetics as Manifestations of Cerebral Lateralization in Mouse Brain

Abstract
Free fatty acid (FFA) content was analyzed in mouse cerebral hemispheres and cerebellum under basal and postdecapitative ischemic conditions. Total FFA content immediately after decapitation (2 s) was about two-fold higher in the left hemisphere than in the right. Marked dissimilarities between hemispheres were also apparent when FFA levels were measured during short periods of ischemia. Whereas in the right side a significant FFA release took place as early as 10 s, no accumulation was detected in the left in the 2–20 s interval. The highest rates of total fatty acid release occurred in the 20–30 s interval in both hemispheres and decreased afterwards (3 min). Individual FFA, especially stearate and arachidonate, differed in their rates of production, the right cerebral hemisphere being more active in releasing arachidonic acid. In cerebellum, FFA levels were lower and accumulation was slower than in cerebrum in both intervals. When subjected to 3 min ischemia, the same difference in FFA levels between right and left hemispheres (50%) was observed in heads kept at 20 or 30°C. The differences between hemispheres are interpreted as manifestations of an inherent lateralization in the regulation of acylation-deacylation reactions of complex lipids.