Dissipationless transport in low density bilayer systems
Preprint
- 17 August 1999
Abstract
In a bilayer electronic system the layer index may be viewed as the z-component of an isospin-1/2. An XY isospin-ordered ferromagnetic phase was observed in quantum Hall systems and is predicted to exist at zero magnetic field at low density. This phase is a superfluid for opposite currents in the two layers. At B=0 the system is gapless but superfluidity is not destroyed by weak disorder. In the quantum Hall case, weak disorder generates a random gauge field which probably does not destroy superfluidity. Experimental signatures include Coulomb drag and collective mode measurements.Keywords
All Related Versions
- Version 1, 1999-08-17, ArXiv
- Published version: Physical Review Letters, 84 (1), 139.
This publication has 0 references indexed in Scilit: