Differential regulation of EIN3 stability by glucose and ethylene signalling in plants

Top Cited Papers
Open Access
Abstract
Glucose is a global regulator of growth and metabolism that is evolutionarily conserved from unicellular microorganisms to multicellular animals and plants1. In photosynthetic plants, glucose shows hormone-like activities and modulates many essential processes, including embryogenesis, germination, seedling development, vegetative growth, reproduction and senescence2,3. Genetic and phenotypic analyses of Arabidopsis mutants with glucose-insensitive (gin) and glucose-oversensitive (glo) phenotypes have identified an unexpected antagonistic interaction between glucose and the plant stress hormone ethylene. The ethylene-insensitive etr1 and ein2 mutants have glo phenotypes, whereas the constitutive ethylene signalling mutant ctr1 is allelic to gin4 (refs 4, 5). The precise molecular mechanisms underlying the complex signalling network that governs plant growth and development in response to nutrients and plant hormones are mostly unknown. Here we show that glucose enhances the degradation of ETHYLENE-INSENSITIVE3 (EIN3), a key transcriptional regulator in ethylene signalling6,7, through the plant glucose sensor hexokinase8. Ethylene, by contrast, enhances the stability of EIN3. The ein3 mutant has a glo phenotype, and overexpression of EIN3 in transgenic Arabidopsis decreases glucose sensitivity.