Normal mode analysis of macromolecular motions in a database framework: Developing mode concentration as a useful classifying statistic
- 30 July 2002
- journal article
- research article
- Published by Wiley in Proteins-Structure Function and Bioinformatics
- Vol. 48 (4) , 682-695
- https://doi.org/10.1002/prot.10168
Abstract
We investigated protein motions using normal modes within a database framework, determining on a large sample the degree to which normal modes anticipate the direction of the observed motion and were useful for motions classification. As a starting point for our analysis, we identified a large number of examples of protein flexibility from a comprehensive set of structural alignments of the proteins in the PDB. Each example consisted of a pair of proteins that were considerably different in structure given their sequence similarity. On each pair, we performed geometric comparisons and adiabatic‐mapping interpolations in a high‐throughput pipeline, arriving at a final list of 3,814 putative motions and standardized statistics for each. We then computed the normal modes of each motion in this list, determining the linear combination of modes that best approximated the direction of the observed motion. We integrated our new motions and normal mode calculations in the Macromolecular Motions Database, through a new ranking interface at http://molmovdb.org. Based on the normal mode calculations and the interpolations, we identified a new statistic, mode concentration, related to the mathematical concept of information content, which describes the degree to which the direction of the observed motion can be summarized by a few modes. Using this statistic, we were able to determine the fraction of the 3,814 motions where one could anticipate the direction of the actual motion from only a few modes. We also investigated mode concentration in comparison to related statistics on combinations of normal modes and correlated it with quantities characterizing protein flexibility (e.g., maximum backbone displacement or number of mobile atoms). Finally, we evaluated the ability of mode concentration to automatically classify motions into a variety of simple categories (e.g., whether or not they are “fragment‐like”), in comparison to motion statistics. This involved the application of decision trees and feature selection (particular machine‐learning techniques) to training and testing sets derived from merging the “list” of motions with manually classified ones. Proteins 2002;48:682–695.Keywords
This publication has 72 references indexed in Scilit:
- Pathways of ligand clearance in acetylcholinesterase by multiple copy samplingJournal of Molecular Biology, 2000
- SURVEY AND SUMMARY: The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database frameworkNucleic Acids Research, 2000
- The Protein Data BankNucleic Acids Research, 2000
- Enzyme specificity under dynamic control: A normal mode analysis of α-lytic proteaseJournal of Molecular Biology, 1999
- Analysis of the Low-frequency Normal Modes of the R State of Aspartate Transcarbamylase and a Comparison with the T State ModesJournal of Molecular Biology, 1996
- Analysis of the Low Frequency Normal Modes of the T-state of Aspartate TranscarbamylaseJournal of Molecular Biology, 1996
- Open "Back Door" in a Molecular Dynamics Simulation of AcetylcholinesteraseScience, 1994
- Essential dynamics of proteinsProteins-Structure Function and Bioinformatics, 1993
- Structure of a hinge-bending bacteriophage T4 lysozyme mutant, Ile3 → ProJournal of Molecular Biology, 1992
- Protein normal-mode dynamics: Trypsin inhibitor, crambin, ribonuclease and lysozymeJournal of Molecular Biology, 1985