GMRES On (Nearly) Singular Systems

Abstract
We consider the behavior of the GMRES method for solving a linear system $Ax = b$ when A is singular or nearly so, i.e., ill conditioned. The (near) singularity of A may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular A, we give conditions under which the GMRES iterates converge safely to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical procedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes a threat to the performance of GMRES.

This publication has 13 references indexed in Scilit: