Non-classical symmetry reduction: example of the Boussinesq equation
- 7 August 1989
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 22 (15) , 2915-2924
- https://doi.org/10.1088/0305-4470/22/15/010
Abstract
A symmetry of an equation will leave the set of all solutions invariant. A 'conditional symmetry' will leave only a subset of solutions, defined by some differential condition, invariant. The authors show how a specific class of conditional symmetries can be used to reduce a partial differential equation to an ordinary one. In particular, for the Boussinesq equation, these conditional symmetries, together with the ordinary ones, provide all possible reductions to ordinary differential equations. A group theoretical explanation of the recently obtained new reductions is provided.Keywords
This publication has 9 references indexed in Scilit:
- Group-Invariant Solutions of Differential EquationsSIAM Journal on Applied Mathematics, 1987
- On similarity solutions of Boussinesq-type equationsPhysics Letters A, 1986
- The construction of special solutions to partial differential equationsPhysics Letters A, 1986
- Automatically determining symmetries of partial differential equationsComputing, 1985
- Linearization of the Boussinesq equation and the modified Boussinesq equationPhysics Letters A, 1982
- On similarity solutions of the Boussinesq equationPhysics Letters A, 1982
- Similarity solutions and Bäcklund transformations of the Boussinesq equationIl Nuovo Cimento B (1971-1996), 1980
- Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixesActa Mathematica, 1910
- Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniformeActa Mathematica, 1902