The Unusual Universality of Branching Interfaces in Random Media

Abstract
We study the criticality of a Potts interface by introducing a {\it froth} model which, unlike its SOS Ising counterpart, incorporates bubbles of different phases. The interface is fractal at the phase transition of a pure system. However, a position space approximation suggests that the probability of loop formation vanishes marginally at a transition dominated by {\it strong random bond disorder}. This implies a linear critical interface, and provides a mechanism for the conjectured equivalence of critical random Potts and Ising models.

This publication has 0 references indexed in Scilit: