SOME BASIC FINITE ELEMENT ANALYSIS OF MICROVOID NUCLEATION, GROWTH AND COALESCENCE
- 1 May 1993
- journal article
- Published by Emerald Publishing in Engineering Computations
- Vol. 10 (5) , 409-421
- https://doi.org/10.1108/eb023917
Abstract
Microstructure void volume fraction is taken into account in finite element models developed for large strain elastoplastic problems. Void nucleation rate is related to matrix effective strain rate, void growth to material strain rate and associated elastoplastic potential available for porous material, void coalescence to matrix effective strain rate. The related radial return algorithm is described. Three types of computations are proposed: first, axisymmetric Q4 element traction are given as validation example; second, collar cylinder compression are computed as reference example; third, bulk forming are analysed as large strain specific example. Void volume fraction and hydrostatic stress are mainly discussed according to microvoids nucleation, growth and coalescence. Finally, the main interests of those computations are enhanced.Keywords
This publication has 4 references indexed in Scilit:
- Material failure by void coalescence in localized shear bandsInternational Journal of Solids and Structures, 1982
- Void Nucleation Effects in Biaxially Stretched SheetsJournal of Engineering Materials and Technology, 1980
- Limits to Ductility Set by Plastic Flow LocalizationPublished by Springer Nature ,1978
- Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile MediaJournal of Engineering Materials and Technology, 1977