Aerosol bolus dispersion and convective mixing in human and dog lungs and physical models
- 1 September 1992
- journal article
- research article
- Published by American Physiological Society in Journal of Applied Physiology
- Vol. 73 (3) , 862-873
- https://doi.org/10.1152/jappl.1992.73.3.862
Abstract
The dispersion of aerosol boluses in the lung is a probe for convective mixing and has been proposed as a marker for abnormal lung function. To better understand the factors underlying this phenomenon, aerosol dispersion was compared in human subjects, dogs, and various physical models. In all systems, dispersion increased with the volumetric penetration of the aerosol bolus. The rate of this increase was 83% greater in humans compared with dogs. Dispersion in dogs was close to that in a packed bed with beads of 2.5 mm. Aerosol dispersion decreased with increasing flow rate in human subjects. An artificial larynx inserted into the straight tube caused a 33% increase in dispersion. In humans, aerosol dispersion was significantly correlated with forced expired flow between 25 and 75% of vital capacity. A 2-s pause between inspiration and expiration increased dispersion 23–58% in three isolated dog lungs but did not affect dispersion in the packed bed. The data suggest that lung geometry, flow rate, particle mobility, and the larynx all significantly affect aerosol dispersion by influencing the reversibility of aerosol transport between inspiration and expiration.Keywords
This publication has 0 references indexed in Scilit: