Abstract
Fully discrete convergence estimates have previously been given for the three-dimensional vortex method proposed by Beale and Majda. It is shown in this paper that vortex filament methods of the kind used in practice converge, provided smooth vortex structures consisting of closed filaments are appropriately discretized, and the stretching of the discrete filaments is computed sufficiently accurately. The error estimates obtained are those of the previous theory.

This publication has 6 references indexed in Scilit: