Roles of Cytochromes P450 1A2 and 3A4 in the Oxidation of Estradiol and Estrone in Human Liver Microsomes
- 16 May 1998
- journal article
- research article
- Published by American Chemical Society (ACS) in Chemical Research in Toxicology
- Vol. 11 (6) , 659-665
- https://doi.org/10.1021/tx970217f
Abstract
Of seven cDNA-expressed human cytochrome P450 (P450) enzymes (P450s 1A2, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4) examined, P450 1A2 was the most active in catalyzing 2- and 4-hydroxylations of estradiol and estrone. P450 3A4 and P450 2C9 also catalyzed these reactions although to lesser extents than P450 1A2. P450 1A2 also efficiently oxidized estradiol at the 16α-position but was less active in estrone 16α-hydroxylation; the latter reaction and also estradiol 16α-hydroxylation were catalyzed by P450 3A4 at significant levels. Anti-P450 1A2 antibodies inhibited 2- and 4-hydroxylations of these two estrogens catalyzed by liver microsomes of some of the human samples examined. Estradiol 16α-hydroxylation was inhibited by both anti-P450 1A2 and anti-P450 3A4, while estrone 16α-hydroxylation was significantly suppressed by anti-P450 3A4 in human liver microsomes. Fluvoxamine efficiently inhibited the estrogen hydroxylations in human liver samples that contained high levels of P450 1A2, while ketoconazole affected these activities in human samples in which P450 3A4 levels were high. α-Naphthoflavone either stimulated or had no effect on estradiol hydroxylation catalyzed by liver microsomes; the intensity of this effect depended on the human samples and their P450s. Interestingly, in the presence of anti-P450 3A4 antibodies, α-naphthoflavone was found to be able to inhibit estradiol and estrone 2-hydroxylations catalyzed by human liver microsomes. The results suggest that both P450s 1A2 and 3A4 have major roles in oxidations of estradiol and estrone in human liver and that the contents of these two P450 forms in liver microsomes determine which P450 enzymes are most important in hepatic estrogen hydroxylation by individual humans. P450 3A4 may be expected to play a more important role for some of the estrogen hydroxylation reactions than P450 1A2. Knowledge of roles of individual P450s in these estrogen hydroxylations has relevance to current controversies in hormonal carcinogenesis [Service, R. F. (1998) Science279, 1631−1633].Keywords
This publication has 16 references indexed in Scilit:
- Reconstitution of Recombinant Cytochrome P450 2C10(2C9) and Comparison with Cytochrome P450 3A4 and Other Forms: Effects of Cytochrome P450–P450 and Cytochrome P450–b5InteractionsArchives of Biochemistry and Biophysics, 1997
- Interindividual variability in catalytic activity and immunoreactivity of three major human liver cytochrome P450 isozymesEuropean Journal of Clinical Pharmacology, 1996
- Molecular Mechanisms of Estrogen CarcinogenesisAnnual Review of Pharmacology and Toxicology, 1996
- P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclaturePharmacogenetics, 1996
- Elevated Estrogen 16 -Hydroxylase Activity: Is This a Genotoxic or Nongenotoxic Biomarker in Human Breast Cancer Risk?JNCI Journal of the National Cancer Institute, 1993
- 17β-Estradiol hydroxylation catalyzed by human cytochrome P450 1A1: A comparison of the activities induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in MCF-7 cells with those from heterologous expression of the cDNAArchives of Biochemistry and Biophysics, 1992
- The Human Hepatic Cytochromes P450 Involved in Drug MetabolismCritical Reviews in Toxicology, 1992
- Characterization of Human Microsomal Cytochrome P-450 EnzymesAnnual Review of Pharmacology and Toxicology, 1989
- Metabolic activation of environmental carcinogens and mutagens by human liver microsomesBiochemical Pharmacology, 1988
- Estimation of isozymes of microsomal cytochrome P-450 in rats, rabbits, and humans using immunochemical staining coupled with sodium dodecyl sulfate-polyacrylamide gel electrophoresisBiochemistry, 1982