Abstract
An ambidextrous electroweak interaction model with SU(2)L×SU(2)R×U(1) gauge symmetry is described in which the conventional quarks and leptons are accompanied by a set of new fermions that transform as singlets of SU(2)L and SU(2)R. Only two doublets of Higgs scalars are introduced to break the gauge symmetry SU(2)L×SU(2)R×U(1) to U(1) of electromagnetism. The masses of all known quarks and leptons result from the Gell-Mann, Ramond, and Slansky ‘‘see-saw mechanism’’ between the conventional fermions and the new ‘‘singlet’’ fermions. The definition of the Fermi coupling constant and neutrino neutral-current interactions are identical to those of the standard SU(2)L×U(1) model. The singlet fermion masses lie in the 100-GeV to 1-TeV range to be probed by the oncoming accelerators of the 1990s.