Hole injection energetics at highly conducting polymer anode: small molecule interfaces studied with photoemission spectroscopy
- 27 February 2002
- proceedings article
- Published by SPIE-Intl Soc Optical Eng
- p. 172-177
- https://doi.org/10.1117/12.457473
Abstract
We report a photoemission study of the interfaces between spin-cast films of a new variation of a polymer blend consisting of poly(3,4-ethylenedioxy-thiophene) (PEDOT) and poly(4-styrenesulfonate) (PSS) and glycerol as an additive, and vacuum-evaporated hole transport layers (HTL) of 4,4'-bis(carbazol-9-yl)biphenyl (CBP),N,N'-diphenyl-N,N'-bis(1-naphthyl)-1-1'biphenyl-4,4'di amine (NPD) and N,N'-diphenyl-N,N'-bis(3methylphenyl)-1,1'-biphenyl-4,4'-dia mine (TPD). The hole injection barrier, as deduced from photoemission spectroscopy, is 0.5 - 0.9 eV at the PEDOT-PSS / HTL interface, which compares very well with the previously reported barrier heights for oxygen plasma -treated indium-tin oxide (ITO)/NPD and ITO/TPD interfaces, and which is, most notably, a factor of two smaller than barriers measured for a PEDOT-PSS/hole-transporting luminescent polymer, e.g. poly(bis-(2-dimethyloctylsilyl)-1,4-phenylvinylene, interface. The measured energy barriers imply a sufficiently efficient charge injection at the studied PEDOT-PSS/HTL interface, which is very encouraging for further development of anode structures based on similar conducting polymer blends and chemically modified structures to be utilized in molecular organic light-emitting device applications.Keywords
This publication has 0 references indexed in Scilit: