On the Coupling of Boundary Integral and Finite Element Methods
Open Access
- 1 October 1980
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 35 (152) , 1063-1079
- https://doi.org/10.2307/2006375
Abstract
Let <!-- MATH ${\Omega ^c}$ --> be the complementary of a bounded regular domain in <!-- MATH ${{\mathbf{R}}^2}$ --> of boundary . We consider the problem (1) <!-- MATH \begin{displaymath} \left\{ {\begin{array}{*{20}{c}} {\Delta u = f;} & {{\text{in}}\;{\Omega ^c},} \\{u{|_\Gamma } = {u_{0,}}} & {} \\\end{array} } \right. \end{displaymath} -->
Keywords
This publication has 7 references indexed in Scilit:
- Topics in pseudo-differential operatorsPublished by Springer Nature ,2010
- The Finite Element Method for Elliptic ProblemsJournal of Applied Mechanics, 1978
- A finite element method for some integral equations of the first kindJournal of Mathematical Analysis and Applications, 1977
- Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension $2$RAIRO. Analyse numérique, 1977
- The coupling of the finite element method and boundary solution proceduresInternational Journal for Numerical Methods in Engineering, 1977
- Finite-element solution of 2-dimensional exterior-field problemsProceedings of the Institution of Electrical Engineers, 1971
- A numerical method for the exterior Dirichlet problem for the reduced wave equationArchive for Rational Mechanics and Analysis, 1966