Interaction of aminoacridines with deoxyribonucleic acid: Viscosity of the complexes

Abstract
The intrinsic, viscosities at zero shear rate of defined complexes of proflavine, 9‐aminoacridine, and 9‐amino‐l,2,3,4‐tetrahydroaeridine with calf thymus DNA have been determined at, various ionic strengths by means of rotating cylinder viscometers. By controlled adjustment, of the composition of the mixtures, the amount of bound acridine (r moles/g.‐atom DNA phosphorus) was maintained constant at different dilutions. The intrinsic viscosities of the complexes increased with r up to r values (ca. 0.16–0.20) corresponding to the end of the process of strong binding of the acridinium cations. However, complex formation between the acridines and thermally denatured DNA caused either a marked decrease in viscosity (at the low ionic strengths of 0.0015 and 0.005) or no change at all (ionic strength 0.1). These results are discussed in the light of presently available hydrodynamic theories relating the intrinsic, viscosity of DNA to its molecular extension.