A Component-Wise EM Algorithm for Mixtures

Abstract
Maximum likelihood estimation in finite mixture distributions is typically approached as an incomplete data problem to allow application of the expectation-maximization (EM) algorithm. In its general formulation, the EM algorithm involves the notion of a complete data space, in which the observed measurements and incomplete data are embedded. An advantage is that many difficult estimation problems are facilitated when viewed in this way. One drawback is that the simultaneous update used by standard EM requires overly informative complete data spaces, which leads to slow convergence in some situations. In the incomplete data context, it has been shown that the use of less informative complete data spaces, or equivalently smaller missing data spaces, can lead to faster convergence without sacrifying simplicity. However, in the mixture case, little progress has been made in speeding up EM. In this article we propose a component-wise EM for mixtures. It uses, at each iteration, the smallest admissible missing...