Abstract
The theory of the sliding of glaciers presented by the author in earlier papers has been generalized (1) by taking into account the resistance to sliding offered by obstacles both smaller and larger than the controlling obstacles and (2) by relaxing the assumption that ice is always in intimate contact with the bed at the down-stream side of an obstacle. The sliding velocities and controlling obstacle sizes which are found from the generalized theory are approximately the same as those found from the earlier theory. A new result obtained from the present theory is that a water layer an order of magnitude smaller in thickness than the height of the controlling obstacles can cause an appreciable increase in the sliding velocity. The generalized theory contains Lliboutry’s sliding theory as an extreme limiting case. For certain thicknesses of a glacier the sliding velocity is a double-valued function of the shear stress exerted at the bed.

This publication has 6 references indexed in Scilit: