High pressure properties of solid α-O2

Abstract
The static and dynamic properties of solid oxygen are calculated vs pressure at zero temperature using a pattern recognition optimization scheme and harmonic lattice dynamics method. The lattice parameters, phonon and libron dispersion curves, acoustic sound velocities, compressibility, root mean square translational and librational fluctuations from equilibrium, and the pressure dependence of the intramolecular stretching mode are calculated. It is shown that the attractive magnetic interaction strongly influences the behavior of the solid at all pressures. A soft mode induced phase transition from the monoclinic α structure to an orthorhombic structure is predicted at zero temperature near 6 kbar. No volume change is observed at the transition.

This publication has 20 references indexed in Scilit: