Role of Chromosomal and Plasmid-Borne Receptor Homologues in the Response of Bacillus megaterium QM B1551 Spores to Germinants

Abstract
Spores of Bacillus megaterium QM B1551 germinate in response to a number of trigger compounds, including glucose, proline, leucine, and inorganic salts. An approximate 6-kb region of the 165-kb plasmid was found to harbor a tricistronic receptor operon, gerU , and a monocistronic receptor component, gerVB . The gerU operon was observed to complement the germination response in plasmidless strain PV361 to glucose and leucine, with KBr acting as a cogerminant. Proline recognition is conferred by the monocistronic gerVB gene, the presence of which also improves the germination response to other single-trigger compounds. A chimeric receptor, GerU*, demonstrates interchangeability between receptor components and provides evidence that it is the B protein of the receptor that determines germinant specificity. Introduction of the gerU / gerVB gene cluster to B. megaterium KM extends the range of germinants recognized by this strain to include glucose, proline, and KBr in addition to alanine and leucine. A chromosomally encoded receptor, GerA, the B component of which is predicted to be truncated, was found to be functionally redundant. Similarly, the plasmid-borne antiporter gene, grmA , identified previously as being essential for germination in QM B1551, did not complement the germination defect in the plasmidless variant PV361. Wild-type spores carrying an insertion-deletion mutation in this cistron germinated normally; thus, the role of GrmA in spore germination needs to be reevaluated in this species.