Broad bandwidth communication/data links using terahertz sources and Schottky diode modulators/detectors

Abstract
This paper describes a new method for carrying increased information in an optical network via imparting that information onto a THz frequency carrier and then "up-shifting" the resulting THz signal into a frequency band where: long-range transmission is facilitated, and there are a wide array of existing components which can be applied. The architecture described here takes the approach of carrier suppression as a method of improving extinction ratio. These authors believe that this general architecture has not been applied in the optical communications field in the past. The focus of this paper will be to describe the proposed approach and to provide estimates of the required performance of each major element of the system. For each element the required performance will be compared with published results to show that the majority of the basic technology to prove-out this approach exists today. While the description which follows is focused on a long-range fiber transmission system, the same approach could also be applied to ultra-high-data-rate local networking as well.

This publication has 0 references indexed in Scilit: