Spatial and temporal distribution of chloroplast DNA polymorphism in a tropical tree species

Abstract
The level and the spatial organization of chloroplast DNA polymorphism were investigated in Dicorynia guianensis Hamshoff (Caesalpiniaceae) at different spatial and temporal scales. D. guianensis is a canopy tree of the rain forest that is distributed throughout the Guiana plateau in small aggregates. Twelve different haplotypes were identified using restriction analysis of polymerase chain reaction (PCR) amplified fragments of the chloroplast genome. When populations from different areas of French Guiana were compared, a clear geographical pattern of haplotype frequencies was identified along the Atlantic coast. This pattern is most likely the result of the restriction–expansion dynamics of the tropical forest during the Quaternary. At the local level, D. guianensis was characterized by a high level of within population diversity. Maintenance of within population diversity results from the dynamics of the aggregates; stochastic demography associated with the turnover of aggregates generates genetic differentiation among them. At the stand level, a strong spatial aggregation of haplotypes persisted from the adult to the seedling cohort indicating limited seed flow. There was also a strong difference in levels of diversity between the cohorts which suggested that recruitment over several years is needed in order to maintain genetic diversity during regeneration.