Ureaplasma urealyticumModulates Endotoxin-Induced Cytokine Release by Human Monocytes Derived from Preterm and Term Newborns and Adults

Abstract
We previously observed thatUreaplasma urealyticumrespiratory tract colonization in infants with a birth weight of ≤1,250 g was associated with increases in the tracheal aspirate proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) relative to the counterregulatory cytokine IL-6 during the first week of life (A. M. Patterson, V. Taciak, J. Lovchik, R. E. Fox, A. B. Campbell, and R. M. Viscardi, Pediatr. Infect. Dis. J. 17:321–328, 1998). We hypothesized thatU. urealyticumalters the host immune response in the presence of a coinflammatory stimulus (e.g., bacterial infection or hyperoxia) by shifting the balance of cytokine expression towards the proinflammatory cytokines. To test this hypothesis, we compared the release of TNF-α, IL-8, IL-6, and IL-10 in vitro by unstimulated andU. urealyticum(with or without lipopolysaccharide [LPS])-stimulated human monocytes from adult peripheral blood and from term and preterm cord blood.U. urealyticumalone and in combination with LPS induced concentration- and development-dependent changes in cytokine release. In vitro inoculation with low-inoculumU. urealyticum(103color-changing units [CCU]) (i) partially blocked the LPS-stimulated IL-6 release by all cells and reduced LPS-stimulated IL-10 release by preterm cells, (ii) stimulated TNF-α and IL-8 release by preterm cells, and (iii) augmented LPS-stimulated TNF-α release in all cells. In preterm cells, high-inoculumU. urealyticum(106CCU) (i) stimulated TNF-α and IL-8, but not IL-6 or IL-10, release and (ii) augmented LPS-stimulated TNF-α and IL-8 release. High-inoculumU. urealyticum(i) stimulated release of all four cytokines in term cells and IL-8 release in adult cells and (ii) augmented LPS-induced TNF-α, IL-10, and IL-8 release in term cells but did not significantly affect LPS-induced cytokine release in adult cells. We speculate thatU. urealyticumenhances the proinflammatory response to a second infection by blocking expression of counterregulatory cytokines (IL-6 and IL-10), predisposing the preterm infant to prolonged and dysregulated inflammation, lung injury, and impaired clearance of secondary infections.