Generalized uncertainty relations and efficient measurements in quantum systems
Preprint
- 3 December 2004
Abstract
We consider two variants of a quantum-statistical generalization of the Cramer-Rao inequality that establishes an invariant lower bound on the mean square error of a generalized quantum measurement. The proposed complex variant of this inequality leads to a precise formulation of a generalized uncertainty principle for arbitrary states, in contrast to Helstrom's symmetric variant in which these relations are obtained only for pure states. A notion of canonical states is introduced and the lower mean square error bound is found for estimating of the parameters of canonical states, in particular, the canonical parameters of a Lie group. It is shown that these bounds are globally attainable only for canonical states for which there exist efficient measurements or quasimeasurements.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: