On a free boundary value problem of physical geodesy, I (uniqueness)
- 1 January 1985
- journal article
- research article
- Published by Wiley in Mathematical Methods in the Applied Sciences
- Vol. 7 (1) , 269-289
- https://doi.org/10.1002/mma.1670070118
Abstract
The determination of the figure of the earth is considered as a local free boundary value problem of potential theory: the shape of a slowly rotating heavy body has to be found from the boundary data of the attracting force and its potential outside of the body, provided that an approximation to the solution is already known. In this paper a uniqueness result is proved which is local with respect to theC1‐topology.Keywords
This publication has 8 references indexed in Scilit:
- Perturbation Theory for Linear OperatorsPublished by Springer Nature ,1995
- A uniqueness result for the geodetic boundary problemJournal of Differential Equations, 1980
- Ein schiefes Randwertproblem zu einer elliptischen Differentialgleichung zweiter Ordnung mit einer expliziten L2-Abschätzung für die zweiten Ableitungen der LösungMathematical Methods in the Applied Sciences, 1979
- The Local Solvability of Molodensky’s Problem in Gravity Spacemanuscripta geodaetica, 1978
- The boundary problems of physical geodesyArchive for Rational Mechanics and Analysis, 1976
- Lineare IntegraloperatorenPublished by Springer Nature ,1970
- Physical geodesyBulletin géodésique, 1967
- Fondements de géométrie différentielle absolue du champ potentiel terrestreBulletin géodésique, 1949