Planetary Migration and Extrasolar Planets in the 2/1 Mean-Motion Resonance

Abstract
We analyze the possible relationship between the current orbital elements fits of known exoplanets in the 2/1 mean-motion resonance and the expected orbital configuration due to migration. It is found that, as long as the orbital decay was sufficiently slow to be approximated by an adiabatic process, all captured planets should be in apsidal corotations. In other words, they should show a simultaneous libration of both the resonant angle and the difference in longitudes of pericenter. We present a complete set of corotational solutions for the 2/1 commensurability, including previously known solutions and new results. Comparisons with observed exoplanets show that current orbital fits of three known planetary systems in this resonance are either consistent with apsidal corotations (GJ876 and HD82943) or correspond to bodies with uncertain orbits (HD160691). Finally, we discuss the applicability of these results as a test for the planetary migration hypothesis itself. If all future systems in this commensurability are found to be consistent with corotational solutions, then resonance capture of these bodies through planetary migration is a working hypothesis. Conversely, If any planetary pair is found in a different configuration, then either migration did not occur for those bodies, or it took a different form than currently believed.

This publication has 0 references indexed in Scilit: