Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals
- 16 January 2007
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (3) , 1081-1086
- https://doi.org/10.1073/pnas.0606434104
Abstract
Studies of flower development in core eudicot species have established a central role for B class MADS-box genes in specifying petal and stamen identities. Similarly in maize and rice, B class genes are essential for lodicule and stamen specification, suggesting homology of petals and lodicules and conservation of B class gene activity across angiosperms. However, lodicules are grass-specific organs with a morphology distinct from petals, thus their true homology to eudicot and nongrass monocot floral organs has been a topic of debate. To understand the relationship of lodicules to the sterile floral organs of nongrass monocots we have isolated and observed the expression of B class genes from a basal grass Streptochaeta that diverged before the evolution of lodicules, as well as the outgroups Joinvillea and Elegia, which have a typical monocot floral plan. Our results support a conserved role for B function genes across the angiosperms and provide additional evidence linking the evolution of lodicules and second whorl tepal/petals of monocots. The expression data and morphological analysis suggest that the function of B class genes should be broadly interpreted as required for differentiation of a distinct second floral whorl as opposed to specifying petal identity per se.Keywords
This publication has 54 references indexed in Scilit:
- Genetic basis for innovations in floral organ identityJournal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005
- Evolution of the APETALA3 and PISTILLATA Lineages of MADS-Box–Containing Genes in the Basal AngiospermsMolecular Biology and Evolution, 2004
- Phylogenetic Analyses and Perianth Evolution in Basal AngiospermsAnnals of the Missouri Botanical Garden, 2003
- Ontogeny and evolution of the flowers of South African Restionaceae with special emphasis on the gynoeciumÖsterreichische botanische Zeitschrift, 2002
- Evolution of the Petal and Stamen Developmental Programs: Evidence from Comparative Studies of the Lower Eudicots and Basal AngiospermsInternational Journal of Plant Sciences, 2000
- ADEF/GLO-like MADS-box gene from a gymnosperm:Pinus radiata contains an ortholog of angiosperm B class floral homeotic genesDevelopmental Genetics, 1999
- MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiospermsDevelopmental Genetics, 1999
- The ABCs of floral homeotic genesPublished by Elsevier ,1994
- The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamensPublished by Elsevier ,1992
- The war of the whorls: genetic interactions controlling flower developmentNature, 1991