Dissociation of Long-Chain Duplex RNA Can Occur Via Strand Displacement in Vitro: Biological Implications

Abstract
Hammerhead ribozymes with long antisense flanks (>50 bases) have been used successfully to inhibit replication of human immunodeficiency virus type 1 (HIV-1) in living cells. To explain their increased efficacy versus antisense controls or catalytically inactive derivatives, one can consider dissociation of the ribozyme-product complex to allow a complete catalytic cycle. In this work we investigated the dissociation of a double-stranded RNA with 56 bp in vitro. Dissociation was observed in the presence of single-stranded RNA with sequence complementarity to one of the duplex strands. A displacement reaction between RNA single strands and the duplex, but not simple dissociation, was strongly suggested by the concentration dependence of this process, the influence of additional non-complementary sequences on the single strand and by the unusually low Arrhenius activation energy. The strand displacement reaction was slow in vitro at 37 degrees C and physiological ionic strength, but was increased to k approximately 10(3)-10(4)/M/s (approximately 10(4)-fold) at higher temperatures by cetyltrimethylammonium bromide. This compound is thought to enhance non-sequence-specific association of nucleic acids in a mechanistically similar way to that in which cellular hnRNP proteins are thought to act, indicating that strand displacement can be fast and, more importantly, could be tightly regulated in vivo.