Abstract
The effect of initial forces on the vibration and stability of curved, clamped, fluid conveying tubes is analyzed by the finite-element technique. The tubes are initially planar with general center-line shapes approximated by constant curvature arcs. The effect of internal pressure is included. Numerical results are presented with, and without, the effects of the initial in-plane forces, for circular arcs S, L, and spiral configurations. Neglecting initial forces results in out-of-plane buckling, while including these forces prevents buckling within the elastic limit, in all configurations studied.