Differential contributions of Ng-CAM and N-CAM to cell adhesion in different neural regions.
Open Access
- 30 June 1986
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 103 (1) , 145-158
- https://doi.org/10.1083/jcb.103.1.145
Abstract
Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was initially to delineate further the binding mechanisms for each CAM. Antibodies to Ng-CAM and N-CAM each inhibited brain membrane vesicle aggregation but the binding mechanisms of the two CAMs differed. As expected from the known homophilic binding mechanism of N-CAM, anti-N-CAM-coated vesicles did not co-aggregate with uncoated vesicles. Anti-Ng-CAM-coated vesicles readily co-aggregated with uncoated vesicles in accord with a postulated heterophilic binding mechanism. It was also shown that N-CAM was not a ligand for Ng-CAM. In contrast to assays with brain membrane vesicles, cellular systems can reveal functional differences for each CAM reflecting its relative amount (prevalence modulation) and location (polarity modulation). Consistent with this, each of the three cellular processes examined in vitro was preferentially inhibited only by anti-N-CAM or by anti-Ng-CAM antibodies. Both neurite fasciculation and the migration of cerebellar granule cells were preferentially inhibited by anti-Ng-CAM antibodies. Anti-N-CAM antibodies inhibited the formation of histological layers in the retina. The data on perturbation by antibodies were correlated with the relative levels of expression of Ng-CAM and N-CAM in each of these different neural regions. Quantitative immunoblotting experiments indicated that the relative Ng-CAM/N-CAM ratios in comparable extracts of brain, dorsal root ganglia, and retina were respectively 0.32, 0.81, and 0.04. During culture of dorsal root ganglia in the presence of nerve growth factor, the Ng-CAM/N-CAM ratio rose to 4.95 in neurite outgrowths and 1.99 in the ganglion proper, reflecting both polarity and prevalence modulation. These results suggest that the relative ability of anti-Ng-CAM and anti-N-CAM antibodies to inhibit cell-cell interactions in different neural tissues is strongly correlated with the local Ng-CAM/N-CAM ratio. Differential cell surface modulation of CAMs having different binding mechanisms may play a major role in shaping different neural regions.Keywords
This publication has 43 references indexed in Scilit:
- Nerve growth factor enhances expression of neuron-glia cell adhesion molecule in PC12 cells.The Journal of cell biology, 1986
- Expression of cell adhesion molecules during embryogenesis and regenerationExperimental Cell Research, 1985
- CELL ADHESION AND THE MOLECULAR PROCESSES OF MORPHOGENESISAnnual Review of Biochemistry, 1985
- Initial appearance and regional distribution of the neuron-glia cell adhesion molecule in the chick embryo.The Journal of cell biology, 1985
- Phenotypic changes and loss of N-CAM-mediated adhesion in transformed embryonic chicken retinal cells.The Journal of cell biology, 1984
- Mapping of three carbohydrate attachment sites in embryonic and adult forms of the neural cell adhesion molecule.The Journal of cell biology, 1984
- Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule.The Journal of cell biology, 1984
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia.The Journal of cell biology, 1978
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970