Formation and differentiation of extraembryonic mesoderm in the rhesus monkey

Abstract
Differentiation of extraembryonic mesoderm in the rhesus monkey was studied from the epithelial penetration stage of implantation (stage 4) through the first week of postimplantation development (to stage 6). It was found that the first cells that appeared between the primitive endoderm (hypoblast) and trophoblast were separated from the latter by a basal lamina but appeared to be either loosely attached to the endoderm or to have been detached from it. Cells in this intermediate position differentiated cytologically into mesenchymal cells, which, by stage 5, had a distinctive intraendoplasmic reticulum marker. This differentiation occurred prior to the time at which the primitive streak could be recognized. By the time the primitive streak was readily discernible (stage 6), the extraembryonic mesoderm had already produced substantial extracellular matrix. The sequence of differentiation was repeated, with a 1‐ to 2‐day lag, in the secondary implantation site. No evidence of a contribution from cytotrophoblast or primitive streak to the extraembryonic mesoderm was found. It is concluded that the origin of the first extraembryonic mesoderm in the rhesus monkey is probably a two‐step process, with formation of a reticulum from primitive endoderm followed by differentiation in situ into mesenchymal cells. The first blood vessels formed also differentiated in situ from the extraembryonic mesenchymal cells. Primitive capillaries were identifiable as early as the 13th day of pregnancy.