Information maintenance and statistical dependence reduction in simple neural networks

Abstract
This study compares the ability of excitatory, feed-forward neural networks to construct good transformations on their inputs. The quality of such a transformation is judged by the minimization of two information measures: the information loss of the transformation and the statistical dependency of the output. The networks that are compared differ from each other in the parametric properties of their neurons and in their connectivity. The particular network parameters studied are output firing threshold, synaptic connectivity, and associative modification of connection weights. The network parameters that most directly affect firing levels are threshold and connectivity. Networks incorporating neurons with dynamic threshold adjustment produce better transformations. When firing threshold is optimized, sparser synaptic connectivity produces a better transformation than denser connectivity. Associative modification of synaptic weights confers only a slight advantage in the construction of optimal transformations. Additionally, our research shows that some environments are better suited than others for recoding. Specifically, input environments high in statistical dependence, i.e. those environments most in need of recoding, are more likely to undergo successful transformations.

This publication has 14 references indexed in Scilit: